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d ≥ 2

Sd−1 = {(x1, . . . , xd) ∈ Rd | x2
1 + . . . + x2

d = 1} (unit sphere),
Bd = {(x1, . . . , xd) ∈ Rd | x2

1 + . . . + x2
d ≤ 1} (unit ball).
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Definition (Delsarte-Goethals-Seidel, 1977)

X ⊂ Sd−1, X: a non-empty finite set,
X: a spherical t-design

⇐⇒ 1
|Sd−1|

∫
Sd−1

f (x)dw(x) =
1
|X|

∑
x∈X

f (x)

for ∀f (x) with deg f ≤ t.

t = 1 =⇒ the center of gravity of X = the origin.
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Seymour-Zaslavsky in 1984
−→ ∃ a spherical t-design ⊂ Sd−1 for ∀d, t.

Theorem (Hong, 1982)

X ⊂ S1, n = |X|.
X: a spherical t-design =⇒
(1) t + 1 ≤ n ≤ 2t + 1 =⇒ X: a regular n-gon,
(2) n = 2t + 2 =⇒ X: the union of two regular (t + 1)-gons,
(3) ∀n ≥ 2t + 3 =⇒ ∃ (ℵ1)X’s which cannot be decomposed

into the union of degree ki-gons where ki ≥ (t + 1).
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Definition (Bannai)

X = {x1, . . . , xn} ⊂ Sd−1: a spherical t-design.
X: non-rigid⇐⇒
∀ε > 0, ∃ a spherical t-design X′ = {x′1, . . . , x′n} ⊂ Sd−1 s.t.
(1) ||xi − x′i|| < ε for ∀i ∈ {1, . . . , n},
(2) 6 ∃T ∈ O(d, R) s.t. Txi = x′i for ∀i ∈ {1, . . . , n}.

X: rigid if X is not non-rigid.
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Conj. A: For ∀ t and d,
if |X| is sufficiently large
(i.e., greater than a certain number f (t, d)),
then X is non-rigid.

Conj. B: For each fixed pair of t and d,
∃ only finitely many rigid spherical t-designs
up to orthogonal transformations.

Conj. A⇐⇒ Conj. B.
Conj. B =⇒ Conj. A: trivial,
Conj. A =⇒ Conj. B: by Lyubich and Vaserstein in 1993.

Theorem (Bannai, 1987)

If X is a rigid spherical t-design in S1, then X consists of k + 1
vertices of a regular (k + 1)-gon with t ≤ k ≤ 2t.
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X = {x1, . . . , xn} ⊂ Sd−1: a spherical t-design
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・no order 

・orthogonal transformation 

        

Fix an ordering of x1, . . . , xn,
X = (x1, . . . , xn) ∈ (Sd−1)n.

topological space
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identify 

{(x1, . . . , xn) | x1, . . . , xn : distinct}/(Sym(n)× O(d, R))
←→ permutation of coordinates, rotation.

Dd(n, t) = {(x1, . . . , xn) ∈ (Sd−1)n | (x1, . . . , xn) : a spherical t-design}.

the set of spherical t-design with n (possibly repeated) points in
Sd−1.
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Dd(n, t) = {(x1, . . . , xn) ∈ (Sd−1)n | (x1, . . . , xn) : a spherical t-design},
Dd(n, t) = Dd(n, t)/Sym(n).

We denote [x1, . . . , xn] ∈ Dd(n, t).
For T ∈ O(d, R),

T[x1, . . . , xn] = [Tx1, . . . , Txn],

[[x1, . . . , xn]] = {T[x1, . . . , xn] | T ∈ O(d, R)},
Dd(n, t) = {[[x1, . . . , xn]] | [x1, . . . , xn] ∈ Dd(n, t)}.
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Lemma
X ∈ Dd(n, t): rigid⇐⇒ [[X]] is an isolated point in Dd(n, t).
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In what follows, we only consider the case of t = 1, i.e.,
spherical 1-design ∈ (Sd−1)n.
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d ≥ 2.
a ∈ Bd, u ∈ Sd−1.

Dd(n, t) = {(x1, . . . , xn) ∈ (Sd−1)n | (x1, . . . , xn) : a spherical t-design}.

Ωd(n, a, u) := {(x1, . . . , xn) ∈ (Sd−1)n | 1
n

n∑
i=1

xi = a, xi = u for some i}.

Ωd(n, a) := {(x1, . . . , xn) ∈ (Sd−1)n | 1
n

n∑
i=1

xi = a}

=
⋃

u∈Sd−1

Ωd(n, a, u).

Ωd(n, o) = Dd(n, 1).
Ωd(n, a): a metric induced from the Euclidean metric in Rdn

−→ Ωd(n, a): a topological space.
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Ωd(n, a) = Ωd(n, a)/Sym(n).

Lemma

The topological space Ωd(n, a) 6= ∅ ⇐⇒ n ≥ 2 or a ∈ Sd−1.
Ωd(n, a) 6= ∅ =⇒ Ωd(n, a): connected.

We recall

Dd(n, t) = {(x1, . . . , xn) ∈ (Sd−1)n | (x1, . . . , xn) : a spherical t-design},
Dd(n, t) = Dd(n, t)/Sym(n).

=⇒ Ωd(n, o) = Dd(n, 1).

Theorem (Y. Inui, A. Munemasa and T.I.)

The topological space Dd(n, 1) is connected if Dd(n, 1) 6= ∅.
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n ≥ 4,
n = (n− 2) + 2.
∃ a spherical 1-design X = (x1, . . . , xn−2) ∈ Dd(n− 2, 1) of n− 2
points in Sd−1. Let e1, e2 ∈ Sd−1 be orthogonal, and set

yθ = cos θe1 + sin θe2,

Yθ = (x1, . . . , xn−2, yθ,−yθ).

Then Yθ ∈ Dd(n, 1), and

|{[[Yθ]] | 0 ≤ θ ≤ π}| > 1.

−→ |Dd(n, 1)| > 1.
Dd(n, 1): connected −→ Dd(n, 1) has no isolated points.
Therefore, 6 ∃ rigid spherical 1-designs of n points.
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Corollary (Y. Inui, A. Munemasa and T.I.)

Let X ∈ Dd(n, 1) be a spherical 1-design. Then the following are
equivalent.

1 X is a rigid spherical 1-design,
2 n = 2 or 3, and X consists of a pair of antipodal points, or X

consists of the vertices of an equilateral triangle.
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