Nomura algebra of nonsymmetric Hadamard models

Takuya Ikuta (joint work with Akihiro Munemasa)

Kobe Gakuin University

Geometric and Algebraic Combinatorics 5. Oisterwijk, The Netherlands, August 18, 2011.

Motivation

W : a spin model \longrightarrow "algebra" attached to a spin model type II + type III "algebra" $=$ Nomura algebra $\mathcal{N}(W)$ $\mathcal{N}(W)=$ the Bose-Mesner algebra of an association scheme (Jaeger-Matsumoto-Nomura in 1997)
W : given $\longrightarrow \quad$ Determine $\mathcal{N}(W)$ by describing the association scheme

Hadamard model W

Nomura in 1994

$$
\left[\begin{array}{cccc}
A & A & \omega H & -\omega H \\
A & A & -\omega H & \omega H \\
\omega H^{T} & -\omega H^{T} & A & A \\
-\omega H^{T} & \omega H^{T} & A & A
\end{array}\right]
$$

A: a Potts model,
H: a Hadamard matrix, $\omega^{4}=1$.

Hadamard graph.
$\mathcal{N}(W)=\left\langle A_{i} \mid i=0, \ldots, 4\right\rangle$,
$\left\{A_{i}\right\}_{i=0}^{4}$: adj.matrices
of the Hadamard graph.
nonsymmetric Hadamard model W^{\prime} Jaeger-Nomura in 1999
$\longrightarrow \mathcal{N}\left(W^{\prime}\right)=?$
$\xi=$ a primitive 8-th root of unity
?
$X=$ a nonempty finite set, $n=|X|$,
$\operatorname{Mat}_{X}\left(\mathbb{C}^{*}\right)=$ the full matrix ring on $\mathbb{C}^{*}=\mathbb{C}-\{0\}$.
Definition:
(1) Hadamard matrix $H \quad \longleftrightarrow H H^{T}=n I, H_{i j}= \pm 1$,
(2) complex Hadamard matrix $C \longleftrightarrow C \bar{C}^{T}=n I,\left|C_{i j}\right|=1$,
(3) a type II matrix $W \quad \longleftrightarrow W\left(W_{-}\right)^{T}=n I$,
$\left(W_{-}\right)_{i j}=\frac{1}{W_{i j}}$.
Example of (3):
a Potts model: $A=u^{3} I-u^{-1}(J-I) \in \operatorname{Mat}_{X}\left(\mathbb{C}^{*}\right)$ with $\left(u^{2}+u^{-2}\right)^{2}=n$.

Let $W \in \operatorname{Mat}_{X}\left(\mathbb{C}^{*}\right)$ be a type II matrix,
$Y_{i j} \in \mathbb{C}^{n}$: a column vector s.t.

$$
Y_{i j}(x) \stackrel{\text { def }}{=} \frac{W_{x, i}}{W_{x, j}} \quad \text { for } \quad \forall i, j \in X
$$

$\mathcal{N}(W) \stackrel{\text { def }}{=}\left\{A \in \operatorname{Mat}_{X}\left(\mathbb{C}^{*}\right) \mid A Y_{i j}=\theta_{i j} Y_{i j}, \forall i, j \in X\right\}$.

Theorem (Jaeger-Matsumoto-Nomura, 1997)

Let $W \in \operatorname{Mat}_{X}\left(\mathbb{C}^{*}\right)$ be a type II matrix.
Then, $\mathcal{N}(W)$ is the Bose-Mesner algebra of an association scheme.
$\mathcal{N}(W)=$ Nomura algebra.
$W=$ a type III matrix

$$
\stackrel{\text { def }}{\Longleftrightarrow} \sum_{x \in X} \frac{W_{a, x} W_{b, x}}{W_{c, x}}=D \frac{W_{a, b}}{W_{a, c} W_{c, b}} \text { for } \forall a, b, c \in X .
$$

If $W \in \operatorname{Mat}_{X}\left(\mathbb{C}^{*}\right)$: a type II, a type III, then W is called a spin model.
Example: Hadamard model

$$
W=\left[\begin{array}{cccc}
A & A & \omega H & -\omega H \\
A & A & -\omega H & \omega H \\
\omega H^{T} & -\omega H^{T} & A & A \\
-\omega H^{T} & \omega H^{T} & A & A
\end{array}\right],
$$

A: a Potts model, H: a Hadamard matrix, $\omega^{4}=1$.

Theorem (Jaeger-Matsumoto-Nomura, 1997)

Let $W \in \operatorname{Mat}_{X}\left(\mathbb{C}^{*}\right)$ be a spin model.
Then, $W \in \mathcal{N}(W)$.

The adjacency matrices of Hadamard graph are the following:
$A_{0}=I_{4 n}$,
$A_{1}=\left[\begin{array}{cccc}0 & 0 & \frac{1}{2}(J+H) & \frac{1}{2}(J-H) \\ 0 & 0 & \frac{1}{2}(J-H) & \frac{1}{2}(J+H) \\ \frac{1}{2}\left(J+H^{T}\right) & \frac{1}{2}\left(J-H^{T}\right) & 0 & 0 \\ \frac{1}{2}\left(J-H^{T}\right) & \frac{1}{2}\left(J+H^{T}\right) & 0 & 0\end{array}\right]$,
$A_{2}=\left[\begin{array}{cccc}J-I & J-I & 0 & 0 \\ J-I & J-I & 0 & 0 \\ 0 & 0 & J-I & J-I \\ 0 & 0 & J-I & J-I\end{array}\right]$,
$A_{3}=\left[\begin{array}{cccc}0 & 0 & \frac{1}{2}(J-H) & \frac{1}{2}(J+H) \\ 0 & 0 & \frac{1}{2}(J+H) & \frac{1}{2}(J-H) \\ \frac{1}{2}\left(J-H^{T}\right) & \frac{1}{2}\left(J+H^{T}\right) & 0 & 0 \\ \frac{1}{2}\left(J+H^{T}\right) & \frac{1}{2}\left(J-H^{T}\right) & 0 & 0\end{array}\right]$,
$A_{4}=\left[\begin{array}{llll}0 & I & 0 & 0 \\ I & 0 & 0 & 0 \\ 0 & 0 & 0 & I \\ 0 & 0 & I & 0\end{array}\right]$.

Graph description:
$G=(X \times X, \sim)$: an undirected graph on the vertex set $X \times X$, $(a, b) \sim(c, d) \stackrel{\text { def }}{\Longleftrightarrow}\left\langle Y_{a b}, Y_{c d}\right\rangle \neq 0$ (Hermitian inner product).
For $C \subset X \times X$, we denote by $A(C)$ the matrix in $\operatorname{Mat}_{X}\left(\mathbb{C}^{*}\right)$ with (a, b)-entry equal to 1 if $(a, b) \in C$ and to 0 otherwise.

Theorem (Jaeger-Matsumoto-Nomura, 1997)

Let C_{1}, \ldots, C_{p} be the connected components of G.
Then, the algebra $\mathcal{N}(W)$ has a basis $\left\{A\left(C_{i}\right) \mid i=1, \ldots, p\right\}$.

```
Theorem (Jaeger-Matsumoto-Nomura, 1997)
Let \(W \in \operatorname{Mat}_{X}\left(\mathbb{C}^{*}\right)\) be a Hadamard model.
Then, \(\mathcal{N}(W)=\left\langle A_{i} \mid i=0, \ldots, 4\right\rangle\),
where \(\left\{A_{i}\right\}_{i=0}^{4}\) are the adjacency matrices of Hadamard graph.
```

triple intersection numbers, quadruple intersection numbers.

nonsymmetric Hadamard model (Jaeger-Nomura, 1999)

nonsymmetric Hadamard model W^{\prime} :

$$
W^{\prime}=\left[\begin{array}{cccc}
A & A & \xi H & -\xi H \\
A & A & -\xi H & \xi H \\
-\xi H^{T} & \xi H^{T} & A & A \\
\xi H^{T} & -\xi H^{T} & A & A
\end{array}\right]
$$

We want to determine $\mathcal{N}\left(W^{\prime}\right)$.

directed Hadamard graph (Jaeger-Nomura, 1999)

We define the adjacency matrices $\left\{A_{i}^{\prime}\right\}_{i=0}^{4}$ of the directed Hadamard graph:

$$
\begin{aligned}
A_{0}^{\prime} & =A_{0}, \\
A_{2}^{\prime} & =A_{2}, \\
A_{4}^{\prime} & =A_{4}, \\
A_{1}^{\prime} & =\left[\begin{array}{cccc}
0 & 0 & \frac{1}{2}(J+H) & \frac{1}{2}(J-H) \\
0 & 0 & \frac{1}{2}(J-H) & \frac{1}{2}(J+H) \\
\frac{1}{2}\left(J-H^{T}\right) & \frac{1}{2}\left(J+H^{T}\right) & 0 & 0 \\
\frac{1}{2}\left(J+H^{T}\right) & \frac{1}{2}\left(J-H^{T}\right) & 0 & 0
\end{array}\right], \\
A_{3}^{\prime} & =\left[\begin{array}{cccc}
0 & 0 & \frac{1}{2}(J-H) & \frac{1}{2}(J+H) \\
0 & 0 & \frac{1}{2}(J+H) & \frac{1}{2}(J-H) \\
\frac{1}{2}\left(J+H^{T}\right) & \frac{1}{2}\left(J-H^{T}\right) & 0 & 0 \\
\frac{1}{2}\left(J-H^{T}\right) & \frac{1}{2}\left(J+H^{T}\right) & 0 & 0
\end{array}\right] .
\end{aligned}
$$

We define

$$
A_{i}^{+}=\left[\begin{array}{cc}
I_{2 n} & 0 \\
0 & 0
\end{array}\right] A_{i}, \quad A_{i}^{-}=\left[\begin{array}{cc}
0 & 0 \\
0 & I_{2 n}
\end{array}\right] A_{i}
$$

Then

$$
\left\langle A_{i}^{ \pm} \mid i=0, \ldots, 4\right\rangle
$$

is a coherent algebra with automorphism ρ :

$$
\rho: A_{1}^{+} \leftrightarrow A_{3}^{-}, A_{1}^{-} \leftrightarrow A_{3}^{+}, A_{i}^{+} \leftrightarrow A_{i}^{-}(i=0,2,4) .
$$

Klin, Muzychuk, Pech, Woldar, and Zieschang in 2007:

$$
\mathcal{A}^{\prime}=\left\langle A_{1}^{\prime}=A_{1}^{+}+A_{3}^{-}, A_{3}^{\prime}=A_{1}^{-}+A_{3}^{+}, A_{0}, A_{2}, A_{4}\right\rangle
$$

is a coherent algebra. Indeed, the Bose-Mesner algebra of the directed Hadamard graph.

$$
W=\left[\begin{array}{cccc}
A & A & \omega H & -\omega H \\
A & A & -\omega H & \omega H \\
\omega H^{T} & -\omega H^{T} & A & A \\
-\omega H^{T} & \omega H^{T} & A & A
\end{array}\right], W^{\prime}=\left[\begin{array}{cccc}
A & A & \xi H & -\xi H \\
A & A & -\xi H & \xi H \\
-\xi H^{T} & \xi H^{T} & A & A \\
\xi H^{T} & -\xi H^{T} & A & A
\end{array}\right] .
$$

Theorem (Munemasa-I.)

$$
\mathcal{N}\left(W^{\prime}\right)=\left\langle A_{i}^{\prime} \mid i=0, \ldots, 4\right\rangle .
$$

Proof.
G : Graph description of $\mathcal{N}(W)$,
(Jaeger-Matsumoto-Nomura: triple, quadruple intersection numbers)
G^{\prime} : Graph description of $\mathcal{N}\left(W^{\prime}\right)$.
$\exists \sigma$: a permutation of $X \times X$ giving an isomorphism $G \rightarrow G^{\prime}$, $A_{i} \mapsto A_{i}^{\prime}$.

