\usepackage[notref]{showkeys} \DeclareMathOperator{\LCM}{LCM} As examples of spin models, we know only Potts models \cite{Jo:pac,J}, From Remark~\ref{0902skype}, \begin{equation} \label{potts} \begin{split} (u^2+u^{-2})^2=|X|\text{ if $|X|\geq 2$,}\\ u^4=1 \text{ if $|X|=1$.} \end{split} \end{equation} %%%%% Lemma:5.01 \[ \mu(W) \mid \max\{ 2m^2,16 \}. \] \DeclareMathOperator{\LCM}{LCM} \cite{KMW} \begin{equation} \label{nshsm} W = \begin{array}{r@{}l} & \begin{array}{cc} \rule[-2ex]{0cm}{4ex}\hspace{4em} \mbox{\scriptsize $X_{0}$} & \hspace{8em} \mbox{\scriptsize $X_{1}$} \end{array} \\ \begin{array}{l} \mbox{\scriptsize $X_{0}$} \\ \mbox{} \\ \mbox{\scriptsize $X_{1}$} \\ \mbox{} \end{array} & \left( \begin{array}{cc} \left( \begin{array}{rr} 1 & 1 \\ 1 & 1 \end{array} \right) \otimes A & \left( \begin{array}{rr} 1 & -1 \\ -1 & 1 \end{array} \right) \otimes \xi H \\ \left( \begin{array}{rr} -1 & 1 \\ 1 & -1 \end{array} \right) \otimes \xi H^T & \left( \begin{array}{rr} 1 & 1 \\ 1 & 1 \end{array} \right) \otimes A \end{array} \right), \end{array} \end{equation} %%%%% Lemma:2.3 \begin{align*} &(W^T W^{-1})(\alpha,\beta) \\ &= %\sum_{z \in X} W^T(\alpha,z) W^{-1}(z,\beta) %\nexteq n^{-1} \sum_{z \in X} W(z, \alpha) W(\beta,z)^{-1} %\nexteq %n^{-1} \sum_{i,\ell \in \ZZ_m} \sum_{x \in Y} %\frac{W\bigl((i,\ell,x),(i_1,\ell_1,x_1)\bigr)}{ %W\bigl((i_2,\ell_2,x_2),(i,\ell,x)\bigr)} \nexteq n^{-1} \sum_{i,\ell \in \ZZ_m} \sum_{x \in Y} \frac{S_{i,i_1}(\ell,\ell_1) T_{i,i_1}(x,x_1)}{S_{i_2,i}(\ell_2,\ell) T_{i_2,i}(x_2,x)} \nexteq n^{-1} \sum_{i,\ell \in \ZZ_m} \frac{\eta^{(\ell-\ell_1)(i-i_1)}}{\eta^{(\ell_2-\ell)(i_2-i)}} \sum_{x \in Y} \frac{\eta^{i-i_1}T_{i_1,i}(x_1,x)}{T_{i_2,i}(x_2,x)} \nexteq n^{-1} \sum_{i \in \ZZ_m} \eta^{-\ell_1(i-i_1)-\ell_2(i_2-i)+(i-i_1)} \sum_{\ell \in \ZZ_m} \eta^{\ell(i_2-i_1)} \sum_{x \in Y} \frac{T_{i_1,i}(x_1,x)}{T_{i_2,i}(x_2,x)} \nexteq mn^{-1} \delta_{i_1,i_2} \sum_{i \in \ZZ_m} \eta^{-\ell_1(i-i_1)-\ell_2(i_1-i)+(i-i_1)} \sum_{x \in Y} \frac{T_{i_1,i}(x_1,x)}{T_{i_2,i}(x_2,x)} \nexteq mn^{-1} \delta_{i_1,i_2} \sum_{i\in \ZZ_m} \eta^{(i_1-i)(\ell_1-\ell_2-1)} \sum_{x \in Y} \frac{T_{i_1,i}(x_1,x)}{T_{i_1,i}(x_2,x)} \nexteq mn^{-1} \delta_{i_1,i_2} \cdot m\delta_{\ell_1,\ell_2+1} \cdot r\delta_{x_1,x_2} \nexteq \delta_{i_1,i_2}\delta_{\ell_1,\ell_2+1}\delta_{x_1,x_2}. \end{align*} \begin{align*} W^T(\alpha, \beta) &= W(\beta,\alpha) %\nexteq %S_{i_2,i_1}(\ell_2,\ell_1) T_{i_2,i_1}(x_2, x_1) \nexteq \eta^{(\ell_2-\ell_1)(i_2-i_1)} T_{i_2,i_1}(x_2, x_1), \\ (RW)(\alpha, \beta) &= \bigl( (I_m \otimes z_m \otimes I_r)W \bigr) ((i_1,\ell_1,x_1), (i_2,\ell_2,x_2)) \nexteq W((i_1,\ell_1-1,x_1), (i_2,\ell_2,x_2)) %\nexteq %S_{i_1,i_2}(\ell_1-1,\ell_2)T_{i_1,i_2}(x_1, x_2) \nexteq \eta^{(\ell_1-1-\ell_2)(i_1-i_2)} T_{i_1,i_2}(x_1, x_2) \nexteq \eta^{(\ell_2-\ell_1)(i_2-i_1)}\eta^{-(i_1-i_2)} T_{i_1,i_2}(x_1, x_2). \end{align*}